

AutoSens USA May 21-23 2024 Huntington Place, Detroit

DAY 1

	Tutoriala					
		Check-in open from 9:30am				
	*for full page holders only					
	141	142 A D				
	141	I4Z A-B				
10-1pm	Mixed-Flow Traffic of CAVs and HDVs	Thermal Imaging: From Planck's Law to ADAS Performance Improvement				
	Vehicular automation, in conjunction with					
	connectivity, is proving to be both	Thermal imaging is a proven technology				
	disruptive and transformative. After more	used for decades in many markets including				
	than a century, the human is relinquishing	defense, industry, and security. For ADAS it				
	control of the driving task to autonomous	is gaining interest at a fast rate due to				
	systems on roads. For the foreseeable	complementarity in advanced conditions				
	future, the transition to a fully	with established sensor technologies.				
	autonomous road transportation system	However, thermal imaging remains				
	will entail the coexistence of connected	perceived as an expensive and niche				
	and autonomous vehicles (CAVs) and	technology. In this tutorial Lynred, a global				
	human-driven vehicles (HDVs) in what is	leader in the thermal imaging sensor				
	commonly labeled as "mixed-flow traffic".	market, will demystify thermal imaging and				
	This introduces several potential	will give you the keys to design your own				
	challenges and opportunities due to the	system.				
	different driving characteristics and	After a landscape of thermal imaging				
	capabilities of humans and autonomous	applications and position with current				
	systems. Existing models and methods	sensing technologies, you will learn the				
	for the management and control of traffic	building blocks of a thermal camera, the				
	networks are premised on HDVs. This	physical laws to consider and metrics				
	tutorial will discuss the modeling,	related. Fields will be radiometry, optics,				
	analysis, and implications of traffic- and	microelectronic, Image Signal Processing,				
	network-related problems in mixed-flow	AI & fusion.				
	traffic environments. It will illustrate	Those learnings will then be applied to				
	potential risks, emergent phenomena, and	estimate range detection on real use-cases				

	opportunities to leverage CAV capabilities, as CAVs become more commonplace. In particular, it will discuss longitudinal and lateral interactions in mixed-flow traffic and consequent network-level impacts.	like the future NHTSA PAEB rulemaking proposition or on your own. As a recreational ending, you will be able to manipulate a thermal camera! Quentin Noir, Product Manager, Lynred	
	Dr Srinivas Peeta, Frederick R. Dickerson Chair & Professor, Georgia Tech		
1pm	Lunch for full pass holders		
2-5pm	Title: ICAT: An Open Source Testbed for Connected and Autonomous Vehicles	Camera Image Quality for ADAS - How Good is Good Enough?	
	In this tutorial, the researchers at the CAR Lab from the University of Delaware will present ICAT, a comprehensive open- source platform for developing connected and autonomous vehicles, highlighting the key areas of vehicle computing, ICAT hardware, Autoware integration, and remote testing. Dr Weisong Shi, Director CAR Lab, University of Delaware and William He, University of Delaware	This tutorial will provide a detailed understanding of the camera image quality standards and metrics that relate to ADAS (Advanced Driver Assistance Systems). The content will cover key image quality factors (e.g., sharpness, noise, distortion, and color) and the metrics that provide quantification of these factors (e.g., spatial frequency response, temporal noise, camera projection model, and color error), Discussion will include how to determine if key performance indicators (KPIs) are being met and how to relate these to camera system performance. Metrics will include those from the IEEE P2020 standard, ISO TC42 Photography standards, and novel image information metrics that relate to machine vision and object recognition.	
		Jonathan Phillips, VP of Imaging Science, Imatest	
4:30	Basic che Exhibit i	ck-in opens ion opens	
5.30 - 6.30pm	Round table di	scussions in 141	
	 All attendees can choose to join one of the following discussions: a) Addressing the Challenges and Opportunities for Thermal Imaging in Automotive, Cal Loo – Regional Sales Manager (USA) and Sebastien Tinnes – Global Market Leader (Automotive), Lynred b) ASMPT 		

	EXHIBITION HALL
5:30 -	Welcome reception in exhibition
7pm	

DAY 2

8:15	Check-in and exhibition opens			
	Main Stage			
	Chair: Robert Stead, Managing Director, Sense Media			
8:45	OPENING REMARKS – Robert Stead, Managing Director, Sense Media			
9am	OPENING KEYNOTE – The Challenge of Moving to Smaller Pixels			
	The 8Mp 2.1um imaging sensor node has become popular for the current generation of autonomous vehicles. As the market further matures, there will likely be demand for increasing resolution in the luxury end of the market and, concurrently, cost-down measures applied to the existing feature set. Additionally, there is a persistent and permanent desire to reduce the size of camera modules.			
	One potential solution to address these pressures is to reduce pixel size. Associated with this reduction, however, is a decrease in pixel sensitivity and a need to open the aperture of lenses to support the resolution and provide increased image luminance to the sensor. The change in aperture reduces the depth of focus of the lenses used and in-turn narrows manufacturing tolerances needed to maintain module performance.			
	We examine the relationship between key performance parameters, such as modulation transfer function (MTF), effective resolution, sensitivity, SNR 1, data-rates and lens placement with respect to pixel size. We calculate an envelope to maintain current camera module performance as compared to the current 8MP 2.1um node and look at the effect on manufacturing tolerances.			
	Robin Jenkin, Distinguished Engineer and Lead Imaging Scientist, NVIDIA			
9.30	KEYNOTE – On the Topic of Defining an AD Product with all Surrounding Stakeholders			
	For quite some time, executives and professionals have said that highly autonomous cars are just years away.			
	Why don't we have more "self driving" cars given all the promises? This talk will contain my own reflections on why I believe it has been so hard. I will furthermore elaborate on the development of best practice and legal requirements that we see.			

10am 10.30a	I will talk about safety management systems, SMS, and also about the need to let safety concepts and requirements be primary drivers and not the opposite, meaning primarily making the function safe as we learn from gathered experience and data. I will present some research results with the purpose to enable a faster and safe ODD expansion. Finally I will speak about interesting things I have encountered during my years within the AD/ADAS community and world of standardization. Hakan Sivencrona, Senior Technical Lead – Safety, Volvo Car Corporation KEYNOTE – Lead Sponsor, TBC			
11am		Press	Briefing – 140F	
	Main Stage	141	142 A-B	142 C
11.15a m	Thermal Imaging: Seeing the Unseen	Deep Learning and Machine Learning	Data Analytics and Simulation	Blending InCabin and Exterior Experiences
			Chair: Alex Polonsky, Founder, Detroit Autonomour Vehicle Group	
11.15a m	Unlocking Pedestrian Safety with Automotive Night Vision. Between 2010 and 2021, pedestrian fatalities in the US increased by 77%, the majority occurring at night, according to the Governors Highway Safety Association. In this presentation, Owl will address in detail upcoming regulatory	An Efficient ADAS Stack: Integrating Multitask Models, Efficient Implementations, and Hardware Aware Optimization Zenseact, in collaboration with Embedl, is enhancing autonomous driving technologies by creating an	Accelerate and Scale AV Simulations on AWS AD simulations are different from traditional CAE hi- fidelity physics simulations used for automotive product development. Unlike tightly coupled CAE simulations, AD simulations tend to be parallel, and are interruptible that scale to hundreds of thousands of vCPUs. There are primarily two types of AV	An optical nervous system to Interconnect Sensors and artificial brains in AV The connectivity of sensors with AI central units is key in ADAS and AV. This connectivity must be reliable, low latency, and high data rate. The presentation will explain how optical interconnections are very well positioned

specifically from the	advanced vision	Simulation and Virtual	compared with other
National Highway	stack for ADAS	Simulation. This	legacy electrical links,
Traffic Safety	and AD systems.	presentation will	attending to demanded
Administration and	This effort	cover: 1/Challenges	data rates, signal
EURO NCAP for	addresses the	running large scale AV	integrity, EMC
night-time	key challenges of	simulations. 2/	performance, and
pedestrian safety.	managing	Recommendations to	future-proven data-rate
Within five years, all	memory, energy,	run large scale Av	scalability.
new cars will have	and	offoctively 2/	
to have nighttime	computational	Customer references	IEEE Std 202 207 on
PAEB as part of	efficiency in deep		automotive ontical
their ADAS suite.	learning models.	Paul George. World	nhysical laver
	The approach	Wide Specialist -	specification
Previously, the	emphasizes	Autonomous Vehicles,	supporting data rates
challenge for	there's no one-	AWS	up to 50 Gb/s, was
deployment has	size-fits-all		released in March
been the cost of	solution; rather,		2023. The main
thermal vs. visible	success relies on		differences between
light cameras and	continuous		the optical physical
the lack of camera	innovation and		layers for automotive
resolution.	the expertise of		and data centers will
	deep learning		attending to
Owl will highlight	specialists and		requirements physical
the architectural	engineers.		laver design.
changes that are	Zenseact adopts		photonics, DSP, link
enabling cost-	multiple		budget, dependability
effective, high-	innovative		functions, and other
resolution, low-	strategies to		distinctive automotive
power next-	streamline deep		features.
generation cameras	learning		
that will be	applications,		TI 1.1
embraced by	such as custom		I ne presentation will
automotive OEMs	C++ and CUDA		implementation of
for ADAS and	implementations		ontical transceivers
autonomy	for faster		from circuit design and
deployments.	execution and		IC packaging points of
Join us to explore	multitask deep		view, is no longer valid
the possibility of	learning models		for automotive and
greater pedestrian	to reduce		which new approaches
safety with the	computational		are needed,
reality of thermal	redundancy.		considering the
night-vision.	These models		different use cases.
	combine tasks		
	like semantic		
Chuck Gershman	segmentation		
CEU, Co-tounder	and lane		

	Owl Autonomous	detection into a		Rubén Pérez-Aranda,
	Imaging	single network,		CTO, KDPOF
		optimizing		
		resource use.		
		Additionally,		
		hardware-aware		
		model		
		optimization,		
		enabled by the		
		Embedl Model		
		Optimization		
		SDK, further		
		refines		
		performance by		
		tailoring model		
		architectures to		
		leverage		
		hardware		
		capabilities fully,		
		resulting in		
		significant		
		improvements in		
		efficiency and		
		execution speed.		
		We explore many		
		of these aspects		
		in our talk, with a		
		special focus on		
		model		
		optimization.		
		Andreas Ask,		
		Deep Learning		
		Researcher,		
		Embedi and		
		Speaker		
		Representative,		
			• • • • •	
11.40a	Expanding the	The Significance	A Data-Driven	Vehicle Computing: A
m	wavelength Range	of iterative	Autonomous Driving	New Era for
	OT ADAS/AD	Understanding of	Bicycliste	Automotive industry
	Cameras		,	Vahioloo hayo haan
		Quality, Would	Shan Bao, Associate	majorly used for
	This procentation	and Actionable	Professor and	transportation in the
	will bigblight	Incidate	Department Chair,	last contury With the
	wiii nigniight	insights,	Industrial &	iast century. With the

challenges and		Manufacturing	proliferation of
solutions for the	Machine Learning	Systems Engineering,	onboard computing
optical alignmen	t (ML) models are	University of	and communication
and testing of	only as good as	Michigan-Dearborn;	capabilities, we
cameras for the	the datasets they		envision that future
wavelength rang	e are trained on.		connected vehicles
beyond the VIS	The quality of the		(CVs) will serve as a
spectrum and	dataset plays a		mobile computing
strategies to	pivotal role in		platform in addition to
achieve the optim	al determining the		their conventional
optical performan	ce performance and		transportation role for
at automotive gra	de reliability of the		the next century. In
production	resulting models.		this presentation, I will
requirements.	However,		present the vision of
	achieving high-		Vehicle Computing,
	quality datasets		which is a new era for
	is not a one-time		the automotive
Dirk Saabaum	task; it requires		industry. Under this
Product Manage	r an iterative		vision, CVs are the
Automation	process of		perfect computation
TRIOPTICS	understanding,		platforms, and
	assessing, and		connected
	refining data to		devices/things with
	enhance model		limited computation
	performance		capacities can rely on
	continually. This		surrounding CVs to
	presentation		perform complex
	delves into the		computational tasks.
	critical role of		
	iteratively		Weisong Shi, Director -
	assessing		The CAR Lab,
	dataset quality		University of Delaware
	concerning		
	model		
	performance in		
	the realm of		
	Tocusing on the		
	ADAS/AD USe		
	cases.		
	Tommy		
	Johansson,		
	Perception		
	Expert, Kognic		

12.05	Lighting Up the		Next-Gen	Situation
	Dark: How new	Auto	nomous Vehicle	Understanding based
	PAEB safety	-	Festina: The	on the Past, Present,
	requirements can	Trans	ition to Software	and Future of
	be met in the most	Defi	ined Vehicles &	Surrounding Troffic
	economical way by	l ate	sensors Fusion	Surrounding Traffic
	combining next	Thr	ough Physically	
	generation thermal	Ac	curate Sensor	Awareness
	Imaging optics and		Simulation	Darren Chen, Head of
	sensors		Simulation	Vision Software,
	Bendix De			LITE-ON Technology
	Meulemeester,			Corporation
	Director Marketing &		ionel Bennes,	
	Business	Pro	auct Manager,	
	Development,		Ansys	
	Umicore Electro-			
10.00			••••••••••••••••••••••••••••••••••••••	
12.30	AI- DOOSTED LWIR	Mee	ting the growing	
	Imaging - Diffusion	del	nand for nign-	
	Models can improve	quai through	ity training data	
	LWIR Image	cinou	ulation colution	
	classification where	SIII		
	training data is not			
	available.	Mott	Delay Director	
	In this presentation	IVIAU	rEpro	
	we show some		терго	
	drawbacks of the			
	Denoising Dinusion			
	(DDPIVIS) - one of			
	the most well-			
	known synthesis			
	approaches - that			
	emerge when			
	applied to thermal			
	images in			
	automotive			
	scenarios for			
	synthesis of novel			
	objects.			
	Mathen chassethet			
	we then show that,			
	based on our			
	internal research			
	effort, we are able to			

	improve these			
	results and to			
	generate novel			
	images of objects			
	hetter than the			
	baseline Our			
	synthosizod imagos			
	synthesized intages			
	exhibit high domain			
	fidelity and realistic			
	appearance. Finally,			
	to further			
	demonstrate the			
	potential of this			
	image synthesis			
	method, we show			
	that using			
	synthesized images			
	of a rare category			
	we can improve its			
	result on an object			
	classification task.			
	Vanatan Diahan			
	Yonatan Disnon,			
	Director of Al,			
	Director of Al, Adasky			
12 55	Director of Al, Adasky	FXHI	RITION HALL	
12.55	Director of Al, Adasky	EXHI	BITION HALL king Lunch Break	
12.55	Director of Al, Adasky	EXHI Network	BITION HALL king Lunch Break	
12.55 14.30	PARK ASSIST AND	EXHI Network Al for AVs: Paving the Way	BITION HALL king Lunch Break Image Sensing	Sensor Fusion: The
12.55 14.30	PARK ASSIST AND Low-Speed	EXHI Network Al for AVs: Paving the Way for Autonomous	BITION HALL king Lunch Break Image Sensing Innovations	Sensor Fusion: The Power of Integration
12.55 14.30	PARK ASSIST AND Low-Speed Maneuvers	EXHI Network AI for AVs: Paving the Way for Autonomous Vehicles	BITION HALL king Lunch Break Image Sensing Innovations	Sensor Fusion: The Power of Integration
12.55 14.30	PARK Adasky PARK ASSIST AND Low-Speed Maneuvers	EXHI Network AI for AVs: Paving the Way for Autonomous Vehicles	BITION HALL king Lunch Break Image Sensing Innovations	Sensor Fusion: The Power of Integration
12.55 14.30	PARK Adasky PARK ASSIST AND Low-Speed Maneuvers Chair: Juergen Hoellisch, Founder	EXHI Network Al for AVs: Paving the Way for Autonomous Vehicles	BITION HALL king Lunch Break Image Sensing Innovations	Sensor Fusion: The Power of Integration
12.55 14.30	PARK Adasky PARK ASSIST AND Low-Speed Maneuvers Chair: Juergen Hoellisch, Founder and CEO. Hoellisch	EXHI Network AI for AVs: Paving the Way for Autonomous Vehicles	BITION HALL king Lunch Break Image Sensing Innovations	Sensor Fusion: The Power of Integration
12.55 14.30	PARK Adasky PARK ASSIST AND Low-Speed Maneuvers Chair: Juergen Hoellisch, Founder and CEO, Hoellisch Consulting	EXHI Network Al for AVs: Paving the Way for Autonomous Vehicles	BITION HALL king Lunch Break Image Sensing Innovations	Sensor Fusion: The Power of Integration
12.55 14.30 14.30	PARK Adasky PARK ASSIST AND Low-Speed Maneuvers Chair: Juergen Hoellisch, Founder and CEO, Hoellisch Consulting Mastering Self-	EXHI Network AI for AVs: Paving the Way for Autonomous Vehicles Al in	BITION HALL king Lunch Break Image Sensing Innovations 4x4 RGBC: A CFA with	Sensor Fusion: The Power of Integration
12.55 14.30 14.30	PARK Adasky PARK ASSIST AND Low-Speed Maneuvers Chair: Juergen Hoellisch, Founder and CEO, Hoellisch Consulting Mastering Self- Parking: Navigating	EXHI Network AI for AVs: Paving the Way for Autonomous Vehicles Al in Automotive:	BITION HALL king Lunch Break Image Sensing Innovations 4x4 RGBC: A CFA with the best of Bayer and	Sensor Fusion: The Power of Integration
12.55 14.30 14.30	PARK Adasky PARK ASSIST AND Low-Speed Maneuvers Chair: Juergen Hoellisch, Founder and CEO, Hoellisch Consulting Mastering Self- Parking: Navigating the Challenges with	EXHI Network	BITION HALL king Lunch Break Image Sensing Innovations 4x4 RGBC: A CFA with the best of Bayer and RCCB	Sensor Fusion: The Power of Integration
12.55 14.30 14.30	PARK Adasky PARK ASSIST AND Low-Speed Maneuvers Chair: Juergen Hoellisch, Founder and CEO, Hoellisch Consulting Mastering Self- Parking: Navigating the Challenges with	EXHI Network	BITION HALL king Lunch Break Image Sensing Innovations 4x4 RGBC: A CFA with the best of Bayer and RCCB	Sensor Fusion: The Power of Integration
12.55 14.30 14.30	PARK Adasky PARK ASSIST AND Low-Speed Maneuvers Chair: Juergen Hoellisch, Founder and CEO, Hoellisch Consulting Mastering Self- Parking: Navigating the Challenges with Innovative Driver	EXHI Network	BITION HALL king Lunch Break Image Sensing Innovations 4x4 RGBC: A CFA with the best of Bayer and RCCB The pursuit of	Sensor Fusion: The Power of Integration
12.55 14.30 14.30	PARK Adasky PARK ASSIST AND Low-Speed Maneuvers Chair: Juergen Hoellisch, Founder and CEO, Hoellisch Consulting Mastering Self- Parking: Navigating the Challenges with Innovative Driver Assistance	EXHI Network	BITION HALL king Lunch Break Image Sensing Innovations 4x4 RGBC: A CFA with the best of Bayer and RCCB The pursuit of enhanced low-light	Sensor Fusion: The Power of Integration
12.55 14.30	PARK Adasky PARK ASSIST AND Low-Speed Maneuvers Chair: Juergen Hoellisch, Founder and CEO, Hoellisch Consulting Mastering Self- Parking: Navigating the Challenges with Innovative Driver Assistance Technologies	EXHI Network	BITION HALL king Lunch Break Image Sensing Innovations 4x4 RGBC: A CFA with the best of Bayer and RCCB The pursuit of enhanced low-light imaging capabilities	Sensor Fusion: The Power of Integration
12.55 14.30	PARK Adasky PARK ASSIST AND Low-Speed Maneuvers Chair: Juergen Hoellisch, Founder and CEO, Hoellisch Consulting Mastering Self- Parking: Navigating the Challenges with Innovative Driver Assistance Technologies	EXHI Network	BITION HALL king Lunch Break Image Sensing Innovations 4x4 RGBC: A CFA with the best of Bayer and RCCB The pursuit of enhanced low-light imaging capabilities has prompted the use	Sensor Fusion: The Power of Integration
12.55 14.30 14.30	PARK Adasky PARK ASSIST AND Low-Speed Maneuvers Chair: Juergen Hoellisch, Founder and CEO, Hoellisch Consulting Mastering Self- Parking: Navigating the Challenges with Innovative Driver Assistance Technologies	EXHI Network	BITION HALL ting Lunch Break Image Sensing Innovations 4x4 RGBC: A CFA with the best of Bayer and RCCB The pursuit of enhanced low-light imaging capabilities has prompted the use of RCCB Color Filter	Sensor Fusion: The Power of Integration

This presentation	President of	the traditional green	
addresses kev	Product	color filters in Baver	
challenges in driver	Management	CFAs with clear filters.	
assistance systems.	and Head of	However, the RCCB's	
with a focus on self-	Advanced Driver	compromised color	
parking	Assistance	accuracy has resulted	
mechanisms and	Systems (ADAS)	in the continued use of	
safety. We explore	and Automated	the Bayer CFA.	
the limitations and	Driving (AD)		
challenges of	Products.	We propose a 4x4	
current sensors.	Oualcomm	RGBC pattern which	
particularly in		combines the superior	
accurately detecting		low-light SNR of RCCB	
small objects such		with the excellent	
as road debris and		color accuracy of	
hazards in different		Bayer. Half of this	
road conditions. Our		pattern's pixels are	
analysis employs a		clear, while the	
comparative		remaining half is	
approach,		distributed among red,	
assessing		green, and blue colors	
technologies like		following a density	
LiDAR and stereo		and arrangement	
vision in self-parking		similar to the Bayer	
scenarios, including		pattern. Leveraging	
operations in		multispectral	
nighttime and		demosaicking	
adverse weather		techniques, we	
conditions.		achieve a high	
The presentation		chrominance	
will eposifically		bandwidth despite the	
highlight the		sparse distribution of	
night the		RGB pixels. This high	
these technologies		chrominance	
facilitate pavigation		bandwidth enables	
in tight spaces		long-distance traffic	
especially at night		light recognition	
Furthermore we will		comparable to that of	
present		the Bayer CFA.	
experimental results			
that showcase		Tripurari Singh, CEO,	
stereo vision's		Image Algorithmics	
capability to detect			
small objects at			
night, like tires at			
distances of 80			
meters without			
headlights –			
cameras must be			

	able to detect obstacles in low light conditions to be considered for self-parking applications			
	Leaf Jiang, CEO & Founder, NODAR			
14.55	Presentation by Berveleen Mashonga, Product Manager, Hyudai Mobis	How Cameras Read the Road Using visible cameras to localize off lane features is vital to the future of ADAS. This session examines the interaction of Al- based detectors to lane characteristics that affect the safety and performance of lateral control systems. Phil Magney, Founder & President, VSI Labs	Introducing the Next Generation of External Camera Vision Systems and Tools Patrice Roulet Fontani, Vice President, Technology and Co-Founder, Immervision	

15.20	Advantages of	Presentation by	
	Radar in Automated	Nimrod	
	Parking	Brickman. VP	
		Business	
	William List , Field	Development	
	Applications		
	Engineer, and Justin	MODILLIL	
	Weeks, Product		
	Marketing Engineer,		
	Texas Instruments		

15.55	Networking coffee break				
16.40	Functional Safety	Market Forces and Horizon Scanning	Driving Vision: Innovations and Standards in Automotive Safety Imaging	What could we learn from?	
	Chair: Tiana May, Features Writer, Future Transport News			Chair: Robert Stead, Managing Director, Sense Media	
16.40	How existing ADAS sensors can support measurable safety based on ground truth	Advancing Autonomy: The Future of Vehicle Technology	Automotive Use Case Studies for Long Distance and Night Object Detection Using Latest Image Sensor Cameras		
	David Bruemmer, Board Member, the Autonomy Institute	The automotive industry is evolving at a rapid pace, re- shaping the current and future driving experience. As trends in electrification and software- defined vehicles drive opportunities for innovation in vehicle autonomy, Julie will discuss the increasing standardization of Advanced Driver Assistance Systems (ADAS), the outlook of	Evolving regulations are directing the automotive industry to sharply adopt and transition to higher levels of safety, providing solutions that prevent death and injuries on roads around the globe. In this study we focus on latest 2.1 µm image sensors and their ability to detect various objects. We use different theoretical metrics in daylight and night conditions, to showcase detection abilities in typical automotive scenarios. Fulfilling latest OEM scenarios and		

		automated	requirements, these	
		driving systems	obiects include	
		as S&P Global	vulnerable road users	
		Mobility projects	and small objects at	
		more than 40%	various distances.	
		of vehicles sold	Using cameras with	
		globally will be	different field-of-views	
		Level 2 and	we demonstrate that	
		above in 2024.	latest Hyperlux	
		and how	sensors outperform	
		regulation and	other solutions and	
		mandates are	enable detection of	
		impacting	these various objects	
		technology	at long distances thus	
		deployment by	making possible up to	
		automakers.	130 KPH speeds and	
			level 3/3+ of	
			autonomous driving.	
			We compliment the	
		Julie Chaote,	studies with numerous	
		Consulting	images and videos.	
		Principle, S&P	<u> </u>	
		Global Mobility		
		-	Sergey Velichko, Sr.	
			Manager, onsemi	
17.05	Pioneering Next-	Semiconductor		
		••••••••••••••••		
	Generation Deep	Scarcity and		
	Generation Deep Ultrasound for	Scarcity and ADAS:		
	Generation Deep Ultrasound for Autonomous	Scarcity and ADAS: Rethinking		
	Generation Deep Ultrasound for Autonomous Mobility	Scarcity and ADAS: Rethinking Automotive		
	Generation Deep Ultrasound for Autonomous Mobility	Scarcity and ADAS: Rethinking Automotive Sourcing for a		
	Generation Deep Ultrasound for Autonomous Mobility Mihai Caleap, CEO &	Scarcity and ADAS: Rethinking Automotive Sourcing for a Resilient Future		
	Generation Deep Ultrasound for Autonomous Mobility Mihai Caleap, CEO & Founder, Calvo	Scarcity and ADAS: Rethinking Automotive Sourcing for a Resilient Future		
	Generation Deep Ultrasound for Autonomous Mobility Mihai Caleap, CEO & Founder, Calyo	Scarcity and ADAS: Rethinking Automotive Sourcing for a Resilient Future The automotive		
	Generation Deep Ultrasound for Autonomous Mobility Mihai Caleap, CEO & Founder, Calyo	Scarcity and ADAS: Rethinking Automotive Sourcing for a Resilient Future The automotive industry is		
	Generation Deep Ultrasound for Autonomous Mobility Mihai Caleap, CEO & Founder, Calyo	Scarcity and ADAS: Rethinking Automotive Sourcing for a Resilient Future The automotive industry is currently at the		
	Generation Deep Ultrasound for Autonomous Mobility Mihai Caleap, CEO & Founder, Calyo	Scarcity and ADAS: Rethinking Automotive Sourcing for a Resilient Future The automotive industry is currently at the crossroads of a		
	Generation Deep Ultrasound for Autonomous Mobility Mihai Caleap, CEO & Founder, Calyo	Scarcity and ADAS: Rethinking Automotive Sourcing for a Resilient Future The automotive industry is currently at the crossroads of a technological		
	Generation Deep Ultrasound for Autonomous Mobility Mihai Caleap, CEO & Founder, Calyo	Scarcity and ADAS: Rethinking Automotive Sourcing for a Resilient Future The automotive industry is currently at the crossroads of a technological revolution, with		
	Generation Deep Ultrasound for Autonomous Mobility Mihai Caleap, CEO & Founder, Calyo	Scarcity and ADAS: Rethinking Automotive Sourcing for a Resilient Future The automotive industry is currently at the crossroads of a technological revolution, with ADAS standing		
	Generation Deep Ultrasound for Autonomous Mobility Mihai Caleap, CEO & Founder, Calyo	Scarcity and ADAS: Rethinking Automotive Sourcing for a Resilient Future The automotive industry is currently at the crossroads of a technological revolution, with ADAS standing as a beacon of		
	Generation Deep Ultrasound for Autonomous Mobility Mihai Caleap, CEO & Founder, Calyo	Scarcity and ADAS: Rethinking Automotive Sourcing for a Resilient Future The automotive industry is currently at the crossroads of a technological revolution, with ADAS standing as a beacon of innovation.		
	Generation Deep Ultrasound for Autonomous Mobility Mihai Caleap, CEO & Founder, Calyo	Scarcity and ADAS: Rethinking Automotive Sourcing for a Resilient Future The automotive industry is currently at the crossroads of a technological revolution, with ADAS standing as a beacon of innovation. However, the		
	Generation Deep Ultrasound for Autonomous Mobility Mihai Caleap, CEO & Founder, Calyo	Scarcity and ADAS: Rethinking Automotive Sourcing for a Resilient Future The automotive industry is currently at the crossroads of a technological revolution, with ADAS standing as a beacon of innovation. However, the journey towards		
	Generation Deep Ultrasound for Autonomous Mobility Mihai Caleap, CEO & Founder, Calyo	Scarcity and ADAS: Rethinking Automotive Sourcing for a Resilient Future The automotive industry is currently at the crossroads of a technological revolution, with ADAS standing as a beacon of innovation. However, the journey towards safer roads has		
	Generation Deep Ultrasound for Autonomous Mobility Mihai Caleap, CEO & Founder, Calyo	Scarcity and ADAS: Rethinking Automotive Sourcing for a Resilient Future The automotive industry is currently at the crossroads of a technological revolution, with ADAS standing as a beacon of innovation. However, the journey towards safer roads has encountered an		
	Generation Deep Ultrasound for Autonomous Mobility Mihai Caleap, CEO & Founder, Calyo	Scarcity and ADAS: Rethinking Automotive Sourcing for a Resilient Future The automotive industry is currently at the crossroads of a technological revolution, with ADAS standing as a beacon of innovation. However, the journey towards safer roads has encountered an unexpected		
	Generation Deep Ultrasound for Autonomous Mobility Mihai Caleap, CEO & Founder, Calyo	Scarcity and ADAS: Rethinking Automotive Sourcing for a Resilient Future The automotive industry is currently at the crossroads of a technological revolution, with ADAS standing as a beacon of innovation. However, the journey towards safer roads has encountered an unexpected obstacle — the		

	of	
	semiconductor	
	chips. This	
	presentation will	
	discuss	
	relationship	
	between	
	semiconductor	
	components and	
	ADAS, unraveling	
	the profound	
	impact of the	
	shortage on	
	OEMs and the	
	consequent	
	evolution of	
	sourcina	
	strategies.	
	At the heart of	
	ADAS lies the	
	relation between	
	sensors and	
	semiconductor	
	chips. This	
	presentation will	
	explain the	
	increasing role of	
	semiconductor	
	chips in cameras,	
	radar, and LiDAR.	
	We will compare	
	the	
	semiconductor	
	content between	
	these three main	
	sensors. We will	
	also explore the	
	need of	
	semiconductors	
	for the	
	computing needs	
	to process data	
	and put it in	
	relation with the	
	level autonomy	
	ot vehicles.	
	Pierrick Boulay,	
	Senior Analyst -	

		Automotive		
		Semiconductor,		
		Yole Group		
17 20	Panal Discussion:	Danal	Panal Discussion:	Panal Disquesian:
17.50	Future-Proofing	Discussion.	Standards for Safety	What can Automotive
	Functional Safety	How do we	The Crucial Role of	learn from the
	Strategies for	Ensure 3-4+	IFFF P2020	Military?
	Emerging	Cars are		ivinitary :
	Technologies and	Insurable?	Quality Working Group	David
	Compliance	inour abro.		Bruemmer,
	Demands	Moderator	loin us for a	Board Member,
		: Mark		the Autonomy
	How do we navigate	Fitzgerald,		Institute and
	the dynamic	Director,		Senior
	landscape of	Autonomo	the pivotal role of the	Consultant,
	functional safety in	us Vehicle	IEEE P2020	DARPA
	sensing technology	Research	Automotive Image	 Sebastien
	for ADAS and AVs?	TechInsig	Quality Working Group.	Tinnes , Global
	Discover strategies	hts	As the ADAS/AV	Market Leader,
	to ensure		landscape evolves, the	Lynred
	robustness and		IEEE P2020 Standards	
	functional actatu for		have emerged as a	
	the over evolving		linchpin, establishing	
	automotive		vital guidelines and	
	technology: learn		benchmarks to	
	how to proactively		enhance vehicle safety	
	address the		by ensuring reliability	
	complexities of		and consistency of the	
	functional safety,		imaging systems.	
	ensuring that your		Robust standards are	
	approach remains		paramount for	
	effective in the face		automotive imaging	
	of rapid changes in		technologies; this	
	the automotive		panel will outline how	
	landscape; and		the efforts of the	
	explore future-		working group	
	proofing strategies,		members have	
	offering key insights		contributed to	
	Into emerging		consistency and	
	technologies and		reliability in automotive	
	domando. In this		imaging from	
	nanol join industry		addressing image	
	leaders regulatory		nrocessing challonges	
	experts and		to ensuring challenges	
	technology			
	lecinology		system compatibility.	

 needed to navigate and thrive in the dynamic realm of functional safety for sensing technology in ADAS and AVs. Moderator: Tiana May, Features Writer, Future Transport News Divya Garikapati, Woven by Toyota Hakan Sivencrona, Senior Technical Lead – Safety, Volvo Car Corporation Charles Gu, Aptiv 	 Moderator: Margaret Belska, IEEE P2020 Automotive Image Quality Working Group, Chair Sarah Kerr, Imaging Scientist, Imatest Shaheen Amanullah, Director – Camera Systems and Integration Solutions, OnSemi Janine Voss, Image Quality Scientist, Image Engineering 	
and opportunities in maintaining functional safety amidst technological advancements. This discussion provides a unique opportunity to gain a deeper understanding of the measures needed to navigate and thrive in the dynamic realm of functional safety for sensing technology in ADAS and AVs.	into the crucial role these standards play in advancing the technological framework, elevating safety and efficacy, and shaping the future of autonomous driving through standardized and reliable automotive imaging technologies. • Moderator: Margaret Belska, IEEE P2020 Automotive	

18.15	Evening Networking Reception inc. Speed networking

DAY 3

8:30		Check-in and exhibition opens			
	Main Stage	141	142 A-B	142 C	
9am	Centralised In- Vehicle Architecture	Infrastructure, V2X, and Connectivity: Creating a Seamless Ecosystem	Advancements in Image Quality	Rethinking LiDAR	
		Chair: David Howard, Founder and Principal, DLH Consulting	Chair: Robin Jenkin, Distinguished Engineer and Lead Imaging Scientist, NVIDIA		
9am	System on Chip (SoC) for the Software Defined Vehicle The software- defined vehicle goes hand in hand with a centralized vehicle and electric/electronic (E/E) architecture. Today, numerous electronic control units (ECU) will generally control different functions in the vehicle, but soon only a few central vehicle computers will	The Future of V2X (and the potential impact of SAE J3216) Mass robotaxi deployment at scale will require a level of cooperation only enabled through C-V2X. This session would be a decomposition of C-V2X through the lens of SAE J3216.	Image pre-processing for DNNs in ADAS and Autonomous Vehicles Applications with Safety and Image Quality In Mind Alexis Lluis, Technical Director – Imaging, Arm	3D Roadway Scene Object Detection with LiDARs in Snowfall Conditions Although LiDARs demonstrate good performance in clean and clear weather conditions, their performance significantly deteriorates in adverse weather conditions such as those involving atmospheric precipitation. This may render perception capabilities of autonomous systems	

unite multiple	Sr Partner and	that use LiDAR data in
system function	s Principal Analyst	learning-based models
from previously	VSI Jahe	to perform object
separate domain	S	detection and ranging
In order to achiev		ineffective While
this it is necessa	rv	efforts have been
to have new	.,,	made to enhance the
computers with		
computers with	a	models the extent of
poweriui processor know	n	cignal degradation
		Signal degradation
as a system on		under various weather
cnip (SoC). This		conditions remains
presentation will		largely not quantified.
review the lates		In this study, we focus
innovations and	·	on the performance of
technology relate	ed	an automotive grade
to centralized		LIDAR in snowy
vehicle		conditions in order to
architecture and		develop a physics-
what benefits it		based model that
will bring for bot	h	examines failure
OEMs and		modes of a LiDAR
consumers.		sensor. Specifically,
		we investigated how
		the LiDAR signal
		attenuates with
Auston		different snowfall
Payyappilly, Sr.		rates and how snow
Manager Produc	:t	particles near the
Management,		source serve as small
Bosch		but efficient reflectors.
		Utilizing our model, we
		simulate LiDAR data in
		snowy scenarios.
		enabling a comparison
		of our synthetic data
		with actual snowy
		conditions
		Chazal Earbani DhD
		Doooarah Officer
		Automativo and
		Surrace Transportation
		I ransportation,
		Canada and Lautiq
		Rahman, Team Lead -

			Connected &
			Automated Vehicles,
			National Research
			Council Canada
9.25a	Bridging the	Advanced Image	A New Approach to
m	Infrastructure	Processing of Non-	Comprehensive LiDAR
	Bandwidth	RGB CFA Sensors for	End of Line Test and
	Challenges for	Automotive	Calibration for LiDAR
	Centralized In-	Applications	Volume Production
	Vehicle	••	
	Architectures	While RCCB, RYYCy,	
		and RCCG sensors	Sebastian Frisch.
	There is an	provide significantly	Product Manager –
	interplay of	better low light	Automotive. FiconTEC
	requirements	sensitivity, it is also	
	between the three	well-known in the	
	main elements of	automotive industry	
	an ADAS/AD	that these types of	
	system - the	non-RGB CFA sensors	
	sensor, the ECU,	suffer from poor Red /	
	and the SerDes	Yellow traffic light	
	connecting	discrimination. Even	
	between them. The	this severe drawback	
	growing	does not stop some	
	resolutions of the	major Tier-1 and OEMs	
	sensors, for	from continuing to	
	example, forces	adopt RCCB, RCCG,	
	higher bandwidth	and RYYCy sensors in	
	requirements on	real products. For	
	the SerDes, while	example, Mobileye	
	the SoC's demand	uses RYYCy sensor,	
	for sensor fusion	and Tesla uses RCCB	
	has implications	sensor, and we are	
	on the amount and	seeing RCCG also	
	type of sensors	being adopted. That	
	spread across the	demonstrates how	
	vehicle.	Important these non-	
	I his session will	KBG CFA sensors are	
	review the growing	tor ADAS and ADS	
	requirements of	applications. Indie's	
	INE ADAS SYSTEM		
	elements -		
		processor resolves the	

	cameras, radars,		Red / Yellow traffic	
	LiDARs and SOCs.		light differentiation	
	We will also		issue of RCCB, RCCG.	
	address the		and RYYCv type	
	resulting		sensors as well as	
	requirements		addresses many other	
	imposed on the		HDR image quality	
	SerDes		improvement. The	
	connectivity		solution includes a	
	solution including		redesign of the ISP	
	bandwidth. EMC.		with specialized	
	frequency, link		algorithms and ISP	
	distance, time		architecture targeting	
	synchronization		non-RGB CFA sensors.	
	and fast boot.		This new ISP	
			technology allows	
	Daniel		automotive computer	
	Shwartzberg.		vision applications to	
	Director of		take full advantage of	
	Business		the improved low light	
	Development and		SNR provided by the	
	System Solutions,		non-RGB CFA sensors	
	Valens		without the Red /	
			Yellow traffic light	
			discrimination issues.	
			Peng Lin, VP & Chief	
			Technology Officer -	
			Vision BU, Indie	
			Semiconductor	
9.50a	Optimizing Data	Fireside Chat:		
m	Transport	Shaping the Global		
	Architectures for	Automotive		
	Automotive AI,	Landscape with		
	ADAS, and	V2X Technologies		
	Embedded Vision	in conversation		
	System-on-Chip	with Qualcomm's		
	(SoC)			
	Architectures	Jim wisener		
	This presentation			
	addresses the	Jim Misener, Global		
	challenges and	V2X Ecosystem		
	solutions in data	Lead at Qualcomm		
	transport for	Technologies, Inc.		
	automotive Al,	and David Howard,		

ADAS, and	a distinguished	
embedded vision	executive with	
systems, focusing	expertise in	
on Networks-on-	Strategy	
Chips (NoCs) in	Operations Mobility	
RISC-V and Arm-	and Transportation	
based SoCs. It		
highlights the	togothor for on	
'memory wall'	ingightful firggidg	
issue and		
emphasizes NoC		
implementation's	conversation	
role in optimizing	explores the	
performance,	growing	
power efficiency,	significance of V2X	
and cost. Key	technologies in the	
points include	automotive sector	
evaluating NoC	and their	
protocols for	transformative	
	impact on a global	
	scale. As smart city	
introducing	planning, urban	
frameworks for	economic	
cache-coherent	development, and	
and non-coherent	transportation	
applications, and	innovation redefine	
emphasizing early	the landscape, the	
assessment of	dialogue will	
physical design	highlight key trends	
constraints to	influencing the	
reduce	future. Drawing	
interconnect area	from his extensive	
and power usage.	experience as a	
The presentation	former Presidential	
also explores		
challenges in		
multiprotocol and		
cache coherent	Secretary David	
Interconnects and	Secretary, David	
the importance of	Howard engages	
ISU20202	with Jim Misener to	
	sned light on	
	Qualcomm	
AITERS NOC	Technologies'	
advanced	pivotal	
brocossor	contributions to the	
architectures is	evolution of V2X	
	technologies.	

	presented as a means to achieve	Discover the collaborative efforts		
	more efficient,	propelling the		
	flexible, and high-	automotive industry		
	performing	toward a safe		
	automotive SoCs.	connected and		
	Frank	intelligent future.		
	Schirrmeister. VP			
	Solutions and			
	Business			
	Development,			
	Arteris			
		Jim Misener,		
		GIODAI V2X		
		Ecosystem Lead,		
		(fireside chat with		
		David Howard)		
		Dana nonaray		
10 15		ЕУШЕ		
10.15 am		Networki	ng coffee break	
am	Networking corree break			
11am	E/E Architecture Evolution	What's next for RADAR?	Camera Systems and Technologies	Ensuring Quality Data Capture
	Chair: Erank			
	Schirrmoistor \/D		Chair: Phil Magney,	
	-MUTHELSTEL VE		Foundar O Dreaddant	
	Solutions and		Founder & President,	
	Solutions and Business		Founder & President, VSI Labs	
	Solutions and Business Development,		Founder & President, VSI Labs	
	Solutions and Business Development, Arteris		Founder & President, VSI Labs	
11am	Solutions and Business Development, Arteris	How to keep	Founder & President, VSI Labs	
11am	Solutions and Business Development, Arteris	How to keep Improving Radar	Founder & President, VSI Labs	
11am	Solutions and Business Development, Arteris	How to keep Improving Radar Resolution without	Founder & President, VSI Labs	
11am	Solutions and Business Development, Arteris	How to keep Improving Radar Resolution without Adding more	Founder & President, VSI Labs	Navigating Data
11am	Solutions and Business Development, Arteris	How to keep Improving Radar Resolution without Adding more Antenna	Founder & President, VSI Labs Why Stray Light	Navigating Data Challenges in Sensor
11am	Solutions and Business Development, Arteris	How to keep Improving Radar Resolution without Adding more Antenna	Founder & President, VSI Labs Why Stray Light (Flare) is an Issue for	Navigating Data Challenges in Sensor Data Acquisition: A
11am	Solutions and Business Development, Arteris	How to keep Improving Radar Resolution without Adding more Antenna	Founder & President, VSI Labs Why Stray Light (Flare) is an Issue for Automotive Cameras	Navigating Data Challenges in Sensor Data Acquisition: A Comprehensive
11am	Solutions and Business Development, Arteris	How to keep Improving Radar Resolution without Adding more Antenna L2+ systems like highway automated	Founder & President, VSI Labs Why Stray Light (Flare) is an Issue for Automotive Cameras Paul Romanczyk	Navigating Data Challenges in Sensor Data Acquisition: A Comprehensive Exploration
11am	Solutions and Business Development, Arteris	How to keep Improving Radar Resolution without Adding more Antenna L2+ systems like highway automated driving remain too	Founder & President, VSI Labs Why Stray Light (Flare) is an Issue for Automotive Cameras Paul Romanczyk, Senior Imaging	Navigating Data Challenges in Sensor Data Acquisition: A Comprehensive Exploration Adrian Bertl, Strategic
11am	Solutions and Business Development, Arteris	How to keep Improving Radar Resolution without Adding more Antenna L2+ systems like highway automated driving remain too expensive and	Founder & President, VSI Labs Why Stray Light (Flare) is an Issue for Automotive Cameras Paul Romanczyk, Senior Imaging Scientist, Imatest	Navigating Data Challenges in Sensor Data Acquisition: A Comprehensive Exploration Adrian Bertl, Strategic Product Manager, b-
11am	Solutions and Business Development, Arteris	How to keep Improving Radar Resolution without Adding more Antenna L2+ systems like highway automated driving remain too expensive and functionally limited	Founder & President, VSI Labs Why Stray Light (Flare) is an Issue for Automotive Cameras Paul Romanczyk, Senior Imaging Scientist, Imatest	Navigating Data Challenges in Sensor Data Acquisition: A Comprehensive Exploration Adrian Bertl, Strategic Product Manager, b- plus Technologies
11am	Solutions and Business Development, Arteris	How to keep Improving Radar Resolution without Adding more Antenna L2+ systems like highway automated driving remain too expensive and functionally limited for widespread use.	Founder & President, VSI Labs Why Stray Light (Flare) is an Issue for Automotive Cameras Paul Romanczyk, Senior Imaging Scientist, Imatest	Navigating Data Challenges in Sensor Data Acquisition: A Comprehensive Exploration Adrian Bertl, Strategic Product Manager, b- plus Technologies GmbH
11am	Solutions and Business Development, Arteris	How to keep Improving Radar Resolution without Adding more Antenna L2+ systems like highway automated driving remain too expensive and functionally limited for widespread use. A key limitation is	Founder & President, VSI Labs Why Stray Light (Flare) is an Issue for Automotive Cameras Paul Romanczyk, Senior Imaging Scientist, Imatest	Navigating Data Challenges in Sensor Data Acquisition: A Comprehensive Exploration Adrian Bertl, Strategic Product Manager, b- plus Technologies GmbH
11am	Solutions and Business Development, Arteris	How to keep Improving Radar Resolution without Adding more Antenna L2+ systems like highway automated driving remain too expensive and functionally limited for widespread use. A key limitation is still the resolution	Founder & President, VSI Labs Why Stray Light (Flare) is an Issue for Automotive Cameras Paul Romanczyk, Senior Imaging Scientist, Imatest	Navigating Data Challenges in Sensor Data Acquisition: A Comprehensive Exploration Adrian Bertl, Strategic Product Manager, b- plus Technologies GmbH
11am	Solutions and Business Development, Arteris	How to keep Improving Radar Resolution without Adding more Antenna L2+ systems like highway automated driving remain too expensive and functionally limited for widespread use. A key limitation is still the resolution and range at which	Founder & President, VSI Labs Why Stray Light (Flare) is an Issue for Automotive Cameras Paul Romanczyk, Senior Imaging Scientist, Imatest	Navigating Data Challenges in Sensor Data Acquisition: A Comprehensive Exploration Adrian Bertl, Strategic Product Manager, b- plus Technologies GmbH

detect and separate	
objects. While this	
challenge has	
traditionally been	
addressed by	
adding more	
antenna channels	
this approach is	
reaching practical	
limits on size.	
power, and cost	
Distributed	
Aperture Radar	
(DAR) technology	
overcomes this	
limitation by using	
multiple Medium	
Range Radar (MRR)	
sensors coherently	
as a single radar	
system. DAR	
makes it possible	
to create	
significantly larger	
apertures, enabling	
azimuth resolutions	
of 0.2 degrees or	
better and accuracy	
of 0.03 degrees or	
better, surpassing	
imaging radar	
capabilities. This	
can be achieved	
with minimal power	
consumption (5-10	
W) and the cost of	
only a few standard	
MRRs. We show	
real-world	
resolution and	
accuracy	
reflector and	
Scenario	
demonstrating the	
ability to solve	
challenging radar	

		scenarios even beyond 200 meters. In the long run, the DAR approach can remove the need for lidar in ADAS systems. Antonio Puglielli, Vice President, Zendar		
11.25	Low-Latency and Low-Power Video Compression in		Enabling Technology for Reliable Miniaturization of	Overcoming Perception Challenges in AD: The Novel
	Automotive The presentation addresses the challenges in		ADAS Sensors Anisotropic Conductive Film (ACF) will be discussed as a	Approach of Augmented Data Utilization
	transmitting image and sensor data for Autonomous Driving (AD) and Advanced Driving Assistance Systems (ADAS), due to increased bandwidth and power demands. Traditional compression methods like AVC/H.264 or HEVC/H.265 cannot meet the low latency, power, cost, complexity, and thermal efficiency requirements. JPEG XS, developed by intoPIX under the JPEG Committee, offers a solution with its design for lightweight, low- complexity, low-	Better Localization with Better Data Noah Gedrimas, VP of Strategy, GPR	key enabler for miniaturization and cost reduction of automotive-grade sensors. The adhesive film with dispersed conductive particles is a superior substitute for solder pastes, mechanical clips, and wire bonding, all of which have inherent vulnerabilities when the form factor of sensors shrinks. By optimizing the particle size, film thickness, and particle configuration, these films ensure design freedom for variations in architecture, and safeguard that fine pitch applications can achieve connectivity without the risk of shorts. Finally, a particle-arrayed ACF is described as a new	In this insightful presentation, neurocat will delve into the innovative approach of augmented data generation, a method distinct from traditional synthetic data approaches and simulation-based techniques, offering enhanced fidelity and relevance for autonomous driving (AD) development. Addressing the critical challenge of creating highly realistic datasets, especially under adverse weather conditions like rain, fog, and snow, neurocat introduces novel augmentation techniques designed to improve the robustness of perception functions in

	latency, and high-	solution for further	AD systems. Through
	quality lossless	miniaturization	empirical evidence and
	compression.		collaborations with
	supporting ratios	Deborah Nash-Makita	industry-leading
	from 2.1 to 14.1	Senior Researcher	teams the session will
	This standard	New Business	highlight the
	allows for efficient	Development	significant benefits of
	compression of	Deverials America	using augmented data
	high-definition		for training and
	content reducing		validating perception
	bandwidth nower		functions particularly
	and cost without		in bandling adga
	and cost without		
			Cases.
	automotive		Florens Greisner, CEO,
	industry's needs?		Neurocat
	One answer is by		
	enabling direct		
	compression of		
	raw sensor data		
	and eliminating the		
	need for		
	debayering, thus		
	preserving quality		
	and reducing		
	storage. This		
	technology		
	supports multi-		
	platform		
	interoperability		
	across ASIC,		
	FPGA, CPU and		
	GPUs.		
	Ben Runyan,		
	Director of		
	Business		
	Development -		
	North America,		
	IntoPIX		
11 50	Looping Converd	NCDoog T1 Ethouset	
11.50			Investigating the
	INEXT LEVEIS OF	i o Streamline	Performance of
		Automotive Sensor	Perception Sensors in
		Network	Winter Conditions
	AUAS IN IVI	Venter 11 050	
	aomain	Yunteng Huang, CEO,	
		Aeonsemi	

In the automotive		Mike Dempsey,
market, especially		Managing Director,
in China, electronic		Claytex
and electrical		2
architectures are		
evolving towards		
central computing.		
This trend can be		
seen in the		
integration of the		
infotainment and		
ADAS systems. By		
combining the		
ADAS function into		
the cabin, the cost		
of the ADAS		
controller can be		
eliminated saving		
costs. The		
ultrasonic sensors		
and connector		
required to achieve		
the ADAS function		
can be added to		
the cabin domain		
at a relatively low		
cost. Siengine has		
embraced the		
central computing		
trend with its		
SE1000 chip		
designed to cater		
to the ever-		
increasing demand		
for multimedia in		
the cabin, while		
also providing the		
necessary		
computing power		
to support the		
complex ADAS		
algorithms. This		
talk will discuss		
the central		
computing trends		
and its impact and		
benefits of		
combining		
infotainment and		

	ADAS systems into			
	one chip. We will			
	also explain			
	several innovative			
	designs we have			
	developed to			
	empower the trend			
	with this chin This			
	talk will also cover			
	the critical role AI			
	nlave in the			
	combined solution			
	and how			
	nartnershins – like			
	the integration of			
	Synoneye's ALID			
	into SiEngino's			
	SETUDU - Call			
	speed time to			
	Hongtao lia			
	Senior Product			
	Architect SiEngine			
	I th			
	Etd.			
12.15				Critical Data
				Challenges in AV
			MEMS Actuator	Development, and
			Application in	their Mitigation
			Automotive Camera	
			Oslin Kuran Dussidant	
			colin Kwan, President	Dr Bruno Sanguinetti,
			and CEO, IVIEIVIS Drive	
			IIIC	OI R&D, Dotabatan
				Dotphoton
		EXHIBITION HALL		
12.40		Network	ing Lunch Break	
		WHY DO WE DO) THIS? - MAIN STAGE	
	C	Chair: Robert Stead , M	anaging Director, Sense N	1edia
14.15	Closing Keynote:	Kristen White, Chief C	Counsel – Federal Highwa	ys Administration, US
		Departm	ent of Transport	
14.45	Panel discussion	: What We Do Matters	: The Importance of Auto	nomous Vehicles for
		Accessi	bility and Equity	

	 This panel will seek to better understand the transformative impact of autonomous vehicles on societal accessibility and equity. Exploring the intersection of cutting-edge technology and social responsibility, the discussion will emphasise the pivotal role autonomous vehicles play in creating a more inclusive and equitable transportation landscape. Expert stakeholders will examine how these innovative technologies can break down barriers for individuals with diverse mobility needs, fostering a future where transportation is not just efficient but also accessible to everyone. Furthermore, we will consider the many factors at play when designing and developing AV technology to ensure that the technology is available and accessible to all. This panel aims to highlight the ethical and practical implications of embracing autonomous vehicles as a means to enhance accessibility, promote equity, and reshape the way we navigate and connect within our communities. Moderator: David Howard, Principal and Founder, DLH Consulting Maria Town, President and CEO, American Association of People with Disabilities
15.25	Closing Remarks – Robert Stead, Managing Director, Sense Media
15.30	Close